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Sinc Function Quadrature Rules for the 
Fourier Integral 

By John Lund 

Abstract. In this paper a numerical algorithm is proposed for the computation of the Fourier 
Transform. The quadrature rule developed is based on the Whittaker Cardinal Function 
expansion of the integrand and a certain Conformal Map. The error of the method is analyzed 
and numerical results are reported which confirm the accuracy of the quadrature rule. 

1. Introduction. The numerical computation of the Fourier integral 

(1.1) f(X) = f f(x)elx dx 
-x 

is beset with difficulties which may arise from the infinite range of integration, the 
oscillatory integrand or singularities of the function f. Since many existing methods 
and the methods of this paper apply to the real integrals 

00 (1.2) gs(x) = g(x) sin Xx dx 

and 

00 (1.3) h -( X)= h(x) cosXx dx, 

it is convenient to rewrite (1.1) as f(X) - igs(X) + h,(X), where h(x) = f(x) + f(-x) 
and g(x) = f(x) -f(-x). 

Many of the methods employed in the computation of (1.2) (or (1.3)) involve the 
truncation of the infinite range of integration followed by an application of a 
classical quadrature rule to the resulting integral with compact support. This method 
is carried out in [4] with a Gauss-Jacobi quadrature, and various interpolatory rules 
(trapezoidal, Simpson's, etc.) have been considered in [2] and [5]. These methods all 
have in common the generation of an alternating sum for the approximation of (1.2) 
or (1.3), and consequently various acceleration techniques may be brought into play. 

Approximating g(x) (or h(x)) in (1.2) (or (1.3)), instead of the entire integrand, is 
probably originally due to Filon [3], where parabolic arcs are used, and various 
refinements of this procedure have been discussed in [6] and [12]. Expansion of the 
transformed function in a series of orthogonal functions has been carried out in [9], 
[13] and [14]. 

The method of the present paper is based on a Whittaker Cardinal Function 
expansion of the integrands in (1.2) and (1.3). The method has the advantage that 
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the weights of the quadrature go to zero in an exponential fashion in a neighborhood 
of the origin, so that the transforms of singular functions can be handled by the 
method. The weights for increasing values of x are asymptotically equi-spaced, so 
that the method readily lends itself to an application of an acceleration method. 

In Section 2, the rule is developed for functions which decrease rapidly as x - co. 
Although many existing methods could handle such transforms with equal facility as 
far as accuracy is concerned, the ease of implementation and its rapid convergence 
(O(e-TaN), T a positive constant) as a function of the number of evaluation points 
(2N + 1) makes the rule highly competitive. Also, the method is conveniently 
applicable for moderate ranges of the transformed variable X. For small X there is no 
particular difficulty due to the slower oscillation, and for large X the methods of 
asymptotics can often yield sufficient accuracy (depending on the tolerance required, 
of course) [8, p. 75]; hence the present method complements existing methods and 
also deals with singular integrands in a straightforward fashion. 

When the function g (or h) is not rapidly decreasing, the evaluation of its 
transform is typically more difficult than in the case of the previous paragraph. In 
the case of slow decrease the cancellation which occurs due to the positive and 
negative contributions to the integral tends to accentuate errors. It is in the present 
situation that various "speed-up" techniques may help to sum oscillating series [1, p. 
63]. It is often the case that a rule has to be specially tailored to allow for the use of 
an acceleration technique. In Section 3 it is shown that the application of the Euler 
transformation in the present case can be carried out in a straightforward fashion 
with a judicious choice of the mesh size. An algorithm guaranteeing this choice of 
the mesh size is included in Section 3, and a few test examples (one with a mild 
singularity) are included which indicate the accuracy of the method. 

2. A Conformal Map. Define the region Dd in the complex z = x + iy plane 

{Dd z I I y I < d} , 

where 0 < d < 7r/2. Assume that D is a simply connected domain in the complex 
w = u + iv plane and 4: D -- Dd is a conformal map of D onto Dd. Further assume 
that +(a) = -oo, +(b) = + oo, where a and b are distinct boundary points of D, and 
set F {x E D: +(x) = w, w E R'}. In this situation, the following general quadra- 
ture scheme is derived in [10]. 

THEOREM 2.1. Assume that f E Hol(D) and 

(2.1) I f(W) dw l- 0 as x + oo, 
(x +X L) 

whereL= {iy IyI< d}.Ifh>Oand 

(2.2) nk= -01(kh), k =O, -+l ,+-2,..., 

then 

(2.3) f(w)dw-h f(nk) 

k-o(:o hV1(kh) 

I i exp[i7TO(w)/h]sgn[Im i(w)] f(w) dw 
2 aD sin(7TO(w)/h) 
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The identity (2.3) yields quadrature rules over a large class of contours T, as 
defined above. It furthermore suggests that a given quadrature problem over a 
contour F may be dealt with by first transforming the integral over F into an integral 
over R', such that (2.1) is satisfied. The form of (2.3) for various maps 4 which will 
handle the finite, semifinite and infinite real intervals is carried out in [10], and a 
survey of these formulas (along with many other applications of the Whittaker 
Cardinal Function) is given in [11]. 

For oscillatory transforms, and in particular (1.2) and (1.3), specify for w = u + iv 
the domain D by 

(2.4) D= { w |arg[sinh(w)] I< d}. 

Define the map 

(2.5) D D 

by 

(2.6) o(w) ln(sinh(w)), 

where "ln" denotes the principal value of the natural logarithm. It follows from the 
Schwarz-Christoffel Theorem that 4 is a conformal map of D onto Dd (map the 
semi-infinite strip into the right half plane and compose with the natural log map). 

For what follows it is convenient to set 

(2.7) G(X, x) = g(x) sin(Xx) 

and define for h > 0 

(2.8) nk - ln(e + e2kh 1?)1)k kO, +1 

and 

(2.9) Wk= (1 + e-2kh)-1/2 k 0, ?1 .... 

THEOREM 2.2. Assume that g E Hol(D), that g satisfies (2.1) and 

C-aD ccD c 

If h > 0, then 

00 ~~~e - Td'h cosh(Xd)N(g, d) 
(2.1 1) ds( g) l-ls(lA )-h WkG ( XX n k)|< 2sn(r/ 

k -oo 

Proof. The computation of the weights and nodes (the Wk and nk, respectively) is 
a direct application of (2.2) using the map (2.6). Using (2.3) with f replaced by 
G(X, w) and the identities 

expl sgn(Im z) tzhaDd - expi ne 

leads to the inequality 
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Finally, substituting the two inequalities 

sin hz | sinh( Td/h) h a D, 

and 

sin(Xw) |D < cosh(Xd) 

in (2.12) and using (2.10) leads to (2.1 1). This completes the proof. 
To consider the truncation error in (2.1 1), define the partial sum 

N 

(2.13) S-vN(g) = h E WkG(X, nA). 
A=-N 

The conditions (2.1) and (2.10) for arbitrary functions g which are holomorphic in D 
are not enough to guarantee a rapid convergence of (2.13) to g,(X). The convergence 
is not only dependent on the parameters X, N and h but also on the rate of decrease 
of the function g. For functions of exponential decay the parameter selection and the 
truncation error are described in the following theorem. 

THEOREM 2.3. Assume that g satisfies the hypothesis of Theorem 2.2 and 

[a-I 
(2.14) I g(u) I< a u U , I -au >1 e ,u 1, 

where a and a are positive constants. Then for all h > 0 

2a aN (2.15) | S!O.(g) S- NV(g) I< e 

Proof. The inequality 

(2.16) k <0 

is an elementary consequence of the definition (2.9). Using (2.8) and the equality 

reAll dt 
nk f dt 

o 2? 

it follows that 

(2.17) nk < ekh Vk 

Combining the assumption (2.14) and (2.16) and the inequality 

e anA 
(1 + 1/Wk)ye akh 

shows that 

WkG(X, nk) < aeakh if k > 0. 

If k < 0, a comparison of the series expansions of Wk and nk (in powers of ekh) 

shows that Wk < nk. Hence, using (2.14), 

WkG(X, nk) < a(Wknl/nk) < an < ae kh. 

It follows that 

(2.18) WkG(X, nk) < ae ealkIh Vk. 
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Hence 

(x he-(N+ I)ha a 
(2.19) S g h~ e-ah -- ?e-Nah (2.19N+ I - e )-|h a 

since ah < eah 1. The sum S-N is similarly bounded, and (2.15) follows from the 
triangle inequality. This completes the proof. 

Combining (2.1 1) and (2.15) it follows that 

(2.20) Is(X) - S N(g) j ET + EC, 
where 

(2.21) ET 2 a(eNh) a 

and 

(2.22) Ec= e-/h(2Soh( > .N(g,D)) 

The selection 

h (27rd/aN)I/2 

in the truncation error bound ET and the contour error integration bound EC is, for 
each fixed X, O(exp(-(2TrdaN )1/2 )). However, for moderate and large values of X a 
more judicious choice of the mesh size h can be made. In particular, given X and an 
error tolerance 10-A (1B E Z+ ), select 

(2.23) h = 27rd/(Xd + ,Bln 10) 

and 

(2.24) N (/ln 10)/ah + I1], 

where [I x 1] is the integer part of x. These are the selections listed in the table below 
for Example (2.1). 

EXAMPLE (2.1) 

oc gs(X) =fe-xsin Xxdx 

Accuracy requested - C 10-4 

X h N=M A.E. R.E. 
1 .92 11 8.X10-5 1.X10-4 
5 .58 16 6. X 10-5 2. X 10-4 

10 .40 25 4. X 10-5 4. X 10-4 
25 .20 46 7. X 10-6 1. X 10-4 
50 .11 82 8.X 10-6 4.X 10-4 

Accuracy requested - C 10-8 

1 .49 38 5. X 10`1 1. X 10-9 
5 .38 50 7.X10-9 3.X10-8 

10 .29 65 1. X 0l1o 1. X 101- 
25 .17 109 1.X 10-9 3.X 10 8 
50 .10 182 5.X 10-10 6.X 10-8 
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For this example, the selection of the parameters h and N are given by (2.23), 
(2.24), respectively. The last column in the table is the relative error. The errors are 
obtained from the known transform g(X) = X/(X2 + 1). 

Before turning to the examples however, note that, in cases where g is singular at 
x = 0 (g'(x) does not exist at x = 0), the use of a symmetric approximating sum 
S_NN(g) to compute g,(X) is not the most efficient method of evaluating g,(X). In 
particular, if I g(u) I< auy-1 (y > 0) in (2.14) and S!"N(g) is replaced by SNM(g), 
then the truncation error ET in (2.21) takes the form 

(2.25) ET = a(eYMh/y + eYNh/a). 

Here the selections (2.23) and (2.24) are maintained, and the lower index of 
summation is selected according to 

(2.26) M [|aN/y 1]. 

If g is singular at the origin, the selection (2.26) has the effect of sampling the 
function g more frequently in a neighborhood of the origin. This can be seen in 
Example (2.2) below where M = 2N. 

EXAMPLE (2.2) 

X e)f sin Xx 

Accuracy requested Q C _ 10-4 

X h N A.E. R.E. 
1 .92 10 7. X 10-5 1. X 10-4 

5 .58 15 2.X 10-5 5.X 10-5 

10 .40 25 4. X 10-5 1. X 10-4 

25 .20 46 2.X10-6 1.X10-5 

50 .11 82 3.x 10-6 2.X 10-5 

Accuracy requested C 10-8 

1 .49 37 3. X 10-8 6. X 10-8 
5 .38 49 4. X 10-9 9. X 10-9 

10 .29 65 2. X 10-9 5. X 10-9 
25 .17 109 1.X 10-9 5.X 10-9 
50 .10 182 3.X10-10 2.X10-9 

For this example, the selection of h, N and M are given by (2.23), (2.24) and 
(2.26), respectively. The absolute and relative errors are obtained using the known 
transform gs(X) = /27T(Q - l)"'2/Q where Q = (X2 + 1)1/2. 

A word of caution should be included with regard to the computation of the nodes 

nk in (2.8). Since the accuracy of the error in (2.20) depends upon an accurate 
computation of the integrand functional values, it is important to compute these 
nodes accurately in a neighborhood of the origin (especially in the case of singular 
functions g, as in Example (2.2)). Due to round-off, direct use of (2.8) is ill-advised, 
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and the following procedure is what was used in the examples of this paper. Rewrite 
(2.8) in the form 

(2.27) n =e kh - Ie3kh + +3e5kh - 315e7kh + O(e 9kh), 

and note that for ekh E (0,. 1) one obtains values for the nk with ten places of 
accuracy if the first four terms on the right-hand side of (2.9) are used. 

The result of Theorem (2.3) corresponding to the cosine transform (1.3) is 
summarized in the following theorem. 

THEOREM 2.4. Assume h in (1.3) satisfies the hypothesis of Theorem (2.2) and the 
inequality (2.14). Define 

H(X, x) = h(x) cos Xx. 

Then 

N 2a 
(2.28) h|(X) - h E WkH(X, nk) -e eaNh + Ec 

k=-N a 

where EC is defined in (2.22) with N(h, D) replacing N(g, D). 

3. Functions of Slow Decrease. The assumption (2.14) of the last section severely 
limits the number of transforms that may be computed using the approximation in 
(2.13). Although the infinite sum in (2.1 1) is very accurate for functions g which do 
not satisfy (2.14), the number of function evaluations required to obtain this 
accuracy by directly summing (2.13) can be prohibitively large. In this section, it is 
shown that an accurate approximation of the transforms (1.2) and (1.3) may be 
obtained from (2.13) if the Euler Transformation is judiciously applied to the 
approximating sum (2.13). As in Section 2, the details of the quadrature rule will be 
carried out for the sine transform, and the necessary changes for the cosine 
transform will be summarized at the end of this section. 

Rewrite the approximating sum (2.13) in the form 
00 

(3.1) Sjm M(g) = h , WkG(X, nk) S-M (g) + S?K(g), 
k=-M 

where 0 < K < N will be specified in what follows. G(X, x) and Wk are defined by 
(2.7) and (2.9), respectively. Using the inequalities (2.14), (2.17) and (2.18), it follows 
that 

(3.2) |S: -o It g)| < *ce-aMh/a. 

Hence the truncation of the sum S-%- l produces no difficulty, and the first sum on 
the right-hand side of (3.1) may be summed directly. 

Instead of summing S?K?(g) in (3.1) directly, define 

(3.3) I {x I67T/X : x < (d+ l)77/X} 

and 

(3.4) a3= h E WkG(X, nk) 
nk E IS 
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so that the sum SK (g) can be rewritten as 
00 

(3.5) SK 0(g) - E (-1) as,. 
8 K 

Now (3.5) is an alternating series, and it is known that the Euler method of 
summation applied to such series often accelerates their convergence. Explicit 
conditions on the terms a, concerning when such an acceleration is effected may be 
found in [1, p. 63]. For the remainder of this section all that need be assumed is that 
there exists a function 

(3.6) k(x) = (x + a)h, a, b > 0, 

such that k(x3) a a36 and the x3 are equispaced. If the sum in (3.5) is denoted by S 
and the truncation errors in approximating S by the partial sums 

N N- K ( kA)AaK 
SN (g) - E (-i) a6 and (1) K 

K 
a?K 

k=K A-=() 

are denoted by EN and EN, respectively, then limN-^,(E7/EN) - 0. Moreover, the 

error in approximating the sum S by the transformed sum satisfies 

(3.7) Is _ (- K 
N- 

(_k [AaK 
AN 

_KaK 

A=) 2k?1 2N-K?1 

Assuming that the a3 in (3.4) satisfy the conditions outlined in the above, the 
following theorem has been established. 

THEOREM 3.1. Assume g in (1.2) satisfies the hypothesis of Theorem (2.2) and 

(3.8) | g(u)j a-u1, u E (0, ). 

If the selection 
_7T 

(3.9) h = A Y Z 

is used in (3.1), then 

(3.10) 
- 

(X) 
_ 

S_ i~(g) (_1)K 

N _ 
gs 

E~~~~k( 2k+1 

ce -M+ Ce(2Y-I)Xd + 'NKaK 
a- +C-2N-K+1 

where C is a constant depending on g and h. 

Now if it is required to compute g*(X) to within a tolerance of 10-, the following 
selection of the parameters M, y, K, N and the inequality (3.10) guarantee that the 
accuracy is achieved. For y in (3.9), put 

(3.11) 'Y4 2Ad n I ] 

and set 

(3.12) M ,8n 10] 
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These selections guarantee that the first two terms on the right-hand side of (3.10) 
are bounded by a constant times 10-A. In practice, one has little control over the 
function g being transformed, so that the selection of the parameters K and N are 
predicated on the other factors which are typically associated with the acceleration 
of the convergence of a series when the Euler Transformation is used (equispaced 
sampling of k in (3.6) and "small" differences of the a3 in (3.4)). The selection 

(3.13) 2h ] 

in (3.7) guarantees that the nodes nk are asymptotically equispaced to within the 
accuracy required of the computation, i.e. 

(3.14) nk= kh + In 2 + O(e 2kh). 

With the selection of h in (3.9) there are y nodes between consecutive zeros of 
sin(Xx), so that the selection 

(3.15) 
N py + K, 

(3.15) ~~~~~p [I3(In 10?+ i)] 

in (3.7) insures that a sufficient number of terms have been taken in the transformed 
sum to satisfy the inequality in (3.7). With these selections, it is guaranteed that the 
right-hand side of (3.10) is bounded above by a constant times 10-A. 

Although the selection of the parameters discussed in the preceding paragraph 
show that R,(X) may be computed to within a given tolerance, the author has found 
that the selections are quite pessimistic in practice. Before discussing the numerical 
implementation of (3.10), its analogue for the cosine transform (1.3) is summed up in 
the following theorem. 

THEOREM 3.2. Assume that h in (1.3) satisfies the hypothesis of Theorem (3.1) and 
the inequality (3.8). If the selection h in (3.9) is made, then 

N -K ( 1) kAkaK 
(3.16) hc(X) - (h) - (_1)K E K 

k~O 2k+1 

< (7 e-XMh + Ce-(2y-I)Xd + AN KAK I 
a 2N-K+1 

Here the partial sum S?J (k) and the ak are the analogues of (3.1) and (3.4) for 
the cosine kernel. Also, the discussion which follows Theorem (3.1) concerning the 
selection of the parameters for (3.10) applies verbatim to (3.16). The implementation 
of the approximation in (3.10), which follows, also applies to the approximation in 
(3.16). 

In practice, the author has found that the selections (3.9), (3.11) and (3.12) cannot 
be improved upon for a large number of examples computed. These are the 
selections made in each of the two examples listed below. However, the selections of 
the "cutoff" K and the number of terms, p, to which the Euler Transformation is 
applied are far too pessimistic. As a case in point here, consider X = 10 in Example 
(3.1) below where an accuracy of 10-8 was given as a tolerance. The selection (3.13) 
and (3.15) give K = 29 and N = 47, respectively. A reference to the table in 
Example (3.1) shows that the requested accuracy was obtained with K = 8 and 
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N = 18. This is not an isolated case and is to be somewhat expected in view of the 
fact that (3.13) and (3.15) do not take into account the relative size of I AN- aK I I 

which for sequences generated by functions of the form in (3.6) (and many others) 
can be quite small. What is done in practice is the following: select p E (0, 1] (1 is 
used in the examples below) and the cutoff K by 

(3.17) | 9(XK) |-< PI7 

where y is defined in (3.11). This selection, in general, guarantees that the differenc- 
ing in the Euler Transformation does not begin until the differences AkaK are small. 

EXAMPLE (3.1) 

sin Xxd gS(X = J x + I d 

Accuracy requested & C 10-4 

X h M K # of terms A. E. R. E. 

1 v/3 8 5 6 4. X 10-5 6. X 10-5 

5 v/5 14 6 9 1.X 10-4 8.X 10-4 

10 7/10 29 8 6 5.X 10-7 1.X 10-6 

25 v/25 73 19 10 1.X 10-7 3.X 10-6 

50 v/50 146 36 8 2.X 10-7 1.X 10-5 

Accuracy requested - C 108 - 

1 v/6 35 5 9 1.X10-7 2.X10-7 

5 7/10 58 12 9 4.X 10-9 2.X 10-X 
10 7/10 58 8 10 2.X 10-8 2.X 10-7 

25 v/25 146 19 10 1.X 10-9 2.X 10-8 
50 v/50 292 36 8 1.X 10-I 5.X 10-9 

For this example, the selections for h, M, and K are given by (3.9), (3.12) and 
(3.17), respectively. The absolute and relative errors are obtained from known values 
of gs(X) given in terms of Sine and Cosine integrals. 

EXAMPLE (3.2) 

g5(XVfx sinx dx 

Accuracy requested - C 10 -4 

X h M K # of termse A. E. R. E. 

v/2 v/2X 6 7 3 3. X10-4 1. X 10-3 

2r V7/X 12 10 4 2. X 10-5 5. X 10-4 

258 7/X 19 10 9 6.X10-7 2.X10-5 8 
8r 7T/X 49 27 9 2.X10-6 4.X 10-4 

25v 7/X 76 42 9 3. X10-6 1. X10-3 2 
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Accuracy requested - C 10-8 

7T/2 q7/4X 24 20 9 1.X 1O-, 4.X 10" 
2,r 7T/A 24 24 9 2. X 108 2. X 10-7 

25r 
7T/; 38 15 9 7.x 10-8 3. X 10-6 

8 
8 7T 7T/X 98 27 9 8.X lO-) l.X 1O-7 

25g 
7/ 152 42 9 2.Xl10- ? 7.XlO8- 

2 

For this example, the selections for h, M, and K are given by (3.9), t3.12) and 
(3.17), respectively. The absolute and relative errors are obtained from known values 
of g,( XX) given in terms of the Fresnel Integrals. 
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